4. Summary Table of Basic Conditions of Undergraduate Teaching Professional Laboratories ## Summary Table of Basic Conditions of Undergraduate Teaching Laboratory | Seria
1
numbe
r | Course | Description | This majoroffers experimental projects | Experim
ent
type/ca
tegory | Main
experimental
equipment | Number
sets | 4 | Number of
groups
that can
be opened | people | |--------------------------|---|---|---|-------------------------------------|-----------------------------------|----------------|--|--|-----------| | 1 | | alkalinity (acid-base | Analysis of the weighing practice of the analytical balance Basic operations of titration analysis | Compre | Electronic balance | 13 | Water
Analysis
Chemistry
Laboratory | 12 | 2-3people | | | | titration method) | Determination of Alkalinity
in Water(Acid-Base
Indicator Titration Method) | | titration stand | 30 | 160.13m ² | | | | 2 | | Hardness
determination | Determination of Water
Hardness(Complexometric
Titration Method) | Compre | Electronic balance | 13 | Water
Analysis
Chemistry | 12 | 2-3people | | | | (complexometric titration method) | | hensive | titration stand | 30 | Laboratory 160.13m ² | | | | 3 | Water
Analyti | alyti (Redox Titration
al Method) | Determination of CODin
Water(Permanganate Index
Method) | Compre | Electronic balance | 13 | Water
Analysis
Chemistry
Laboratory | 12 | 2-3people | | | cal
Chemis | | | | titration stand | 30 | 160.13m ² | | | | 4 | try | Dissolved oxygen determination (redox | Determination of Dissolved Oxygen in | Compre | Electronic balance | 13 | Water
Analysis
Chemistry | 12 | 2-3people | | | | titration method) | Water(Iodometric Method) | | titration stand | 30 | Laboratory 160.13m ² | | | | | | Determination of iron
content (absorption
spectrometry) | Determination of divalent
iron and total iron in
water(Absorption
Spectroscopy) | Compre
hensive | Electronic balance | 13 | Water
Analysis
Chemistry | 12 | 2-3people | | 5 | | | | | Visible spectrophotometer | 11 | Laboratory 160.13m ² | | | | 6 | | Determination of Clions in water | Determination experiment of Cl ⁻ ions in water | Compre
hensive | Electronic balance | 13 | Water Analysis Chemistry Laboratory 160.13m ² | 12 | 2-3people | | 1 | Water
Microbi
ology
Experi
ment | Observation of the morphology and special structures of microorganisms | Operation of optical
microscopes and
observation of microbial
morphology | Verificat
ion | microscope | 19 | Water Microbiolog y Laboratory 80.44 m ² | 10 | 4people | | 2 | | Staining techniques
for microorganisms
and observation of
activated sludge | Gram staining of bacteria
and the use of oil
immersion microscopy | Compre
hensive | microscope | 19 | Water Microbiolog y Laboratory 80.44 m ² | 10 | 4people | | 3 | | Medium preparation, yeast counting | Preparation and sterilization
of culture media
Counting and measuring
yeast cells | Compre | microscope High-temperature sterilizer | 19 | Water
Microbiolog
y
Laboratory
80.44 m ² | 10 | 4people | |---|----------------------------------|--|--|-------------------|---|--|---|----|---------| | 4 | | Separation of bacteria
and viable cell
counting in activated
sludge | Dilution, separation, and inoculation of microorganisms in the soil | Compre | microscope Biochemical incubator Large-capacity constant temperature shaker | 1931 | Water
Microbiolog
y
Laboratory
80.44 m ² | 10 | 4people | | 5 | | Determination of total
bacterial count in
drinking water | Determination and counting
of total bacteria in water
bodies | Compre | microscope Biochemical incubator Ultra-clean workbench | 1932 | Water
Microbiolog
y
Laboratory
80.44 m ² | 10 | 4people | | 6 | | Coliform bacteria
physiological and
biochemical tests,
determination of
coliform bacteria in
drinking water | Determination and counting
of coliform bacteria in
water bodies | Compre
hensive | microscope Biochemical incubator Ultra-clean workbench | 1932 | Water Microbiolog y Laboratory 80.44 m ² | 10 | 4people | | 1 | Hydrau
lics
experi
ment | Point pressure
measurement and
verification of
pressure pipe head | Comprehensive Experiment of Fluid Statics | | Hydrostatic Pressure
Transmission
Demonstration
Instrument | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 3 | 4people | | 2 | | Point flow rate and flow rate distribution measurement | Bito management speed
measurement and
correction factor calibration
experiment | Compre
hensive | Self-circulating pitot tube speed measurement instrument Comprehensive Fluid Mechanics Experimental Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | | 3 | | Calibration of the flow coefficient of a Venturi flowmeter | Venturi comprehensive
experiment | Compre
hensive | Self-circulating Venturi experiment device Comprehensive Fluid Mechanics Experimental Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | | 4 | | Verification
experiment of
Bernoulli's equation | Comprehensive experiment on the constant total flow Bernoulli equation | Compre | Bernoulli equation
experimental device
Comprehensive
Fluid Mechanics
Experimental
Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | | 5 | | Flow state analysis | Renault experiment | Verificat
ion | Self-circulating
Reynolds meter
Comprehensive
Fluid Mechanics
Experimental
Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | | 6 | | Resistance coefficient measurement | Local head loss experiment | Verificat
ion | Local resistance coefficient measurement experimental device Comprehensive Fluid Mechanics Experimental Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | |---|---|---|---|-------------------|--|-----|---|----|---------| | 7 | | Flow analysis of pressurized pipe flow | Head loss experiment along the route | Verificat
ion | Resistance coefficient measuring instrument Comprehensive Fluid Mechanics Experimental Platform | 3 | Fluid
Mechanics
Laboratory
169.87 m ² | 6 | 4people | | 8 | | Law of Momentum | Momentum Law
Experiment | Verificat
ion | Momentum Law
Experiment
Platform | 4 | Fluid
MechanicsL
aboratory
169.87 m ² | 3 | 4people | | 1 | Pump
and
Pump
Station
Experi
ment | Determination of flow
rate, head, shaft
power, and rotational
speed of centrifugal
pumps; operating
methods for
centrifugal pumps | Centrifugal pump
performance curve
measurement experiment | Compre
hensive | Centrifugal pump
performance
comprehensive
testing device | 6 | Pump and Pump Station Laboratory 79.5 m ² | 6 | 4people | | 1 | Water
Quality
Engine
ering
Experi
ment | | ConcretePrecipitationExper iment | Design | Six-way mixing
experiment stirrer
Scattering light
turbidity meter
pHmeter | 6 6 | Water
Quality
Engineering
Laboratory
251.57m ² | 6 | 4people | | 2 | | Granular free sedimentation experiment | Free sedimentation experiment | Compre
hensive | Free sedimentation device (6 units) Scattering light turbidity meter | 4 | Water Quality Engineering Laboratory 251.57m ² | 8 | 4people | | 3 | | Filtration and backwashing experiment | Filtration and Backwashing
Experiment | Compre
hensive | Filtration and
backwashing
experimental device
Scattering light
turbidity meter | 8 | Water Quality Engineering Laboratory 251.57m ² | 8 | 4people | | | | | | | Ultraviolet-
VisibleSpectrophoto
meter | 6 | | | | | 4 | | Activated carbon adsorption experiment | Activated carbon adsorption experiment | Design | Digital display
constant
temperature
oscillating water
bath | 3 | Water
Quality
Engineering
Laboratory
251.57m ² | 6 | 4people | | | | | | | Water bath constant
temperature
oscillator | 3 | | | | | 5 | | Determination
experiment of total
exchange capacity | Determination experiment of total resin exchange | Compre
hensive | titration stand | 30 | Water
Quality | 12 | 4people | | | exchange capacity of | exchange capacity | | | | Laboratory | | | |---|---|---|-------------------|---|-------------------|---|----|----------| | | resin | | | | | 251.57m ² | | | | 6 | Sludge Index (SVI)
and the determination
and analysis
experiment of sludge
specific resistance | Sludge Index (SVI) and the
determination and analysis
experiment of sludge
specific resistance | | Constant temperature drying oven Muffle furnace Electronic balance Water circulation vacuum pump | 7
1
13
6 | Water
Quality
Engineering
Laboratory
251.57m ² | 12 | 4people | | 7 | Oxygenation experiment in the aeration system | Aeration and oxygenation experiment | Compre
hensive | (turntable, blower) | 7 | Water
Quality
Engineering
Laboratory
251.57m ² | 7 | 4people | | | | | | Portable dissolved oxygen meter | 7 | | | | | 8 | Operation and control
experiment of
pressurized dissolved
air flotation | Experiment on the operation and control of pressurized gas flotation | Compre
hensive | Air flotation experimental device (Group 6) Laminar flow air flotation experimental device | 2 | Water
Quality
Engineering
Laboratory
251.57m ² | 6 | 4people | | 9 | Comprehensive Water
Treatment Experiment | Comprehensive Water
Treatment Experiment | Design | All experimental instruments | - | Water Supply and Drainage Engineering Laboratory 1289m ² | - | 4people | | 1 | Constru ction Water Supply Demonstration of fire and hydrants and Drainag automatic sprinkler e fire extinguishing Engine systems eringIn spectio n | Demonstration of fire
hydrants and automatic
sprinkler fire extinguishing
systems | Demonst
ration | Comprehensive Experimental Demonstration Platform for Building Water Supply and Drainage | 1 | Building
Water
Supply and
Drainage
Engineering
Laboratory
82.51m ² | 1 | 20people | and working capacity and working Engineering Design-oriented and comprehensive experiments are conducted in batches of half a class or a whole class, with no more than 4 people in each group.